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The feasibility of an experimental method for investigations of the particle flux to
an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well
as an Eulerian representation. A laboratory experiment is carried out, where an
approximately homogeneous and isotropic turbulent flow is generated by two moving
grids. The simultaneous trajectories of many small approximately neutrally buoyant
polystyrene particles are followed in time. In a Lagrangian analysis, we select one
of these as the centre of a ‘sphere of interception’, and obtain estimates for the time
variation of the statistical average of the inward particle flux through the surface
of this moving sphere. The variation of the flux with the radius in the sphere of
interception, as well as the variation with basic flow parameters is described well by a
simple model, in particular for radii smaller than a characteristic length scale for the
turbulence. The Eulerian counterpart of the problem is analysed as well, and the two
results compared. Applications of the problem to, for instance, the question of the
feeding rate of micro-organisms in turbulent marine environments are pointed out.

1. Introduction
Often, the problem of turbulent diffusion in neutral turbulent flows is analysed in

terms of an initial value problem (Batchelor 1952; Roberts 1961). However, for many
applications, a boundary value problem is more relevant. As such an example we
here consider the turbulent particle flux to a perfectly absorbing spherical surface,
which is a realistic physical model for many practical applications. This formulation
of the problem serves, for instance, as a model for predator–prey encounters in
turbulent waters, which seems to be the application that has received most attention
recently (Sundby & Fossum 1990; Kiørboe & Saiz 1995). For small predators, fish
larvae for instance (Muelbert, Lewis & Kelley 1994), it can be assumed that their
self-induced motion is small or negligible, and that they are passively convected by
the local flow velocity, at least to a good approximation. Similarly, it can be assumed
that their food (micro-zooplankton, for instance) is also passively convected by the
same flow. The feeding process can be modelled by assuming that any individual prey
entering a suitably defined ‘sphere of interception’ is captured with certainty. The
surface is thus ‘virtual’ in the sense that it does not disturb the flow.

In turbulent waters, the prey flux to a passively convected predator is related to the
problem of relative diffusion, but now considered as a boundary value problem, with
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Figure 1. Schematic illustration of the experimental set-up, showing the movable grids and
the four video cameras. A restricted measuring volume of 140 × 140 × 120mm3 is shown by
thin lines.

the sphere of interception acting as a perfect absorber of prey. This is the standard
model for this particular problem (Rothschild & Osborn 1988; Osborn 1996). We
use this as a reference case in the following, for simplicity and definiteness. The
general interest in the problem arises essentially from the simple observation that the
food concentration in the near region of a predator will rapidly be depleted, and
without any self-induced motion a predator starve, unless the prey within its sphere
of interception is replaced by turbulent mixing in the surrounding flow. Although the
results presented in this work explicitly refer to spherical volumes, the scaling laws
that are obtained will have a wider range of applications.

We propose and demonstrate the feasibility of an experimental method for a
quantitative study of turbulent transport into an absorbing surface, and present
results for varying parameters. It is demonstrated that a relatively simple model
equation is adequate for describing the basic features of our observations. The paper
is organized as follows. In § 2 we give a short summary of the experimental set
up, and the experimental conditions. In § 3 we analyse the simplest problem for the
turbulent flux to a stationary spherical surface. In § 4 we discuss experimental results
for particle fluxes to an absorbing sphere where the centre is identified by a particle
which is moving with the flow. Section 5 contains a discussion of a simple analytical
model which gives results in fair agreement with observations. Finally, § 6 contains
our conclusions. Preliminary results from our study were published in Mann et al.
(2002). Some of the figures in the following sections show normalized fluxes: the
appropriate normalizing quantity is stated explicitly in each case.

2. Experimental set-up
The basic features of the present experiment are described elsewhere (Ott & Mann

2000), with a detailed description given by Mann, Ott & Andersen (1999). A short
summary will suffice here. The turbulence is generated by the motion of two plastic
grids, near the top and bottom of a tank with 320×320×450 mm3 inner dimensions,
see figure 1 for a schematic illustration.
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αε2/3 LE σ Lint ε τη η λ Rλ

(mm4/3 s−2) (mm) (mm s−1) (mm) (mm2 s−3) (s) (mm) (mm)

45 31 18 23 160 0.075 0.26 5.1 100
41 27 16 20 140 0.080 0.27 4.9 88
40 29 16 22 135 0.081 0.27 5.1 93
45 28 17 21 160 0.075 0.26 4.9 91
24 29 12 22 62 0.120 0.33 5.8 81
65 29 21 22 279 0.056 0.22 4.5 104
56 28 19 21 225 0.063 0.24 4.6 97
25 27 12 20 65 0.117 0.32 5.6 78

Table 1. Summary of the parameters derived from the second-order structure function and the
spectra obtained from it, based on measurements in the restricted volume shown in figure 1.

Typical Taylor micro-scale Reynolds numbers (Hinze 1975), Rλ = λ2/(η2
√

15), are

∼ 100 for the present conditions, using the Taylor micro-scale λ=
√

15νσ 2/ε, where
ν � 0.89 mm2 s−1 is the kinematic viscosity of the water, ε is specific energy dissipation
rate, and σ 2 is the variance of one velocity component. The Kolmogorov length
scale η = (ν3/ε)1/4 is less than 1/2 mm for the present conditions, while Kolmogorov
time scales τη are in the range 0.05–0.12 s. The ‘micro-scale’ η represents the length
scales where the viscous effects become important. A characteristic Eulerian length
scale (‘outer’ scale) LE as well as ε are determined by fitting a von Kármán type
wavenumber spectrum (Mann et al. 1999; Ott & Mann 2000) to the experimentally
obtained data,

E(k) = αε2/3L5/3
E

(LEk)4

(1 + (LEk)2)17/6
, (2.1)

where α is the spectral Kolmogorov constant (Monin & Yaglom 1975). LE is found
to be in the range 25–30 mm. We can interpret LE as the lower limit for separations
between fixed frame detection points, where the velocities of fluid elements tend to
become uncorrelated. As a working hypothesis we can assume that velocities are also
statistically independent for separations larger than LE . An integral length scale can
be defined by the integral of the parallel velocity-component correlation function
R‖(r) as Lint =

∫ ∞
0

R‖(r) dr . A summary of parameters for eight different conditions
used in the present work is given in table 1.

The motions of small polystyrene particles of size a = 0.5–0.6 mm are followed with
four video-cameras, and the simultaneous positions of typically 500–1000 particles
recorded at time intervals of 1/25 s. The size of the effective measuring volume is
approximately 140 × 140 × 120 mm3. It is ensured that the particles used in the
experiment are approximately neutrally buoyant, as described by Mann et al. (1999).
By a tracking procedure it is then possible to link the positions of particles (Mann
et al. 1999), and thus follow their individual motions in three spatial dimensions.
In particular their time varying velocity can also be deduced. An illustrative sample
trajectory is shown in figure 2, showing a series of small spheres, centred at the particle
positions, at individual sampling times. For illustration, the spheres are here drawn
much larger than the polystyrene particles. The reference particle moves in the down-
ward direction. Since this time sequence is one of the longer ones obtained, the
superposition of the spheres at subsequent sampling times gives rise to an appearance
like a grey ‘band’.
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Figure 2. Sample of particle trajectory obtained experimentally with 1/25 s time resolution.
The small spheres give the particle position, and the continuous line is a numerically
interpolated particle trajectory, projected onto three of the bounding surfaces of the box.
The distance between the tic-marks on axes is 10 mm. Dashed lines show the back side of the
figure.
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Figure 3. Experimentally obtained second-order structure function, as a function of separation
variable y. The upper dashed line shows a y2/3 fit. The dotted line refers to the longitudinal
structure function, and the dot-dashed line to its transverse counterpart. The full line gives the
structure function Ψ2‖ + 2Ψ2⊥.

Experiments are carried out for different intensities of the turbulent velocity
fluctuations, 〈u2〉. With the polystyrene particles acting as markers for the local
flow velocities, experimental estimates can be obtained for the second-order structure
function, Ψ2(y) = 〈(ui(r, t) − ui(r + y, t))2〉, being independent of t for stationary
time conditions. An example is shown in figure 3, also including a fit for small
separations given by a dashed line, using the universal Kolmogorov (εr)2/3 law.
If the separation vector is along the y-axis, we have the longitudinal structure
function Ψ2‖(y) ≡ 〈(uy(0, t) − uy(y, t))2〉 given by the dotted line, with CK being the
Kolmogorov constant, related to the spectral constant α from (2.1) by CK ≈ 1.315 α
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(Monin & Yaglom 1975). We note that CK is known with some uncertainty, and a
value of CK ≈ 2.5 can be justified as well as CK ≈ 2.0 (Monin & Yaglom 1975; Ott &
Mann 2000). The dash-dotted line in figure 3 gives the transverse structure function
Ψ2⊥(y) ≡ 〈(ux(0, t) − ux(y, t))2〉. By a general relation (Hinze 1975) we have

Ψ2⊥ =
1

2y

d(y2Ψ2‖)

dy
,

for locally homogeneous and isotropic turbulence. With Ψ2‖ ≈ CK (εy)2/3, we find
Ψ2⊥ ≈ (4/3)Ψ2‖ in the universal subrange. The solid line in figure 3 shows 〈(u(r, t) −
u(r + y, t))2〉 =2(〈u2〉−〈u(r, t) · u(r + y, t)〉). The purpose of figure 3 is to demonstrate
the existence of a universal range, and to indicate the range of its validity, here up
to separations of the order of 20–25 mm, as determined by an approximately 20 %
accurate fit to the assumed universal structure function. All lengths are measured in
units of mm.

A large-scale mean flow can be observed in the experiment, with a velocity up to
5.3 mm s−1 in the vertical direction, and 2.8–4.5 mms−1 in the two other directions,
these values depending somewhat on the frequency of the grid oscillations (Mann
et al. 1999). Other methods for forcing the turbulence (Webster, Brathwaite & Yen
2004; Hwang & Eaton 2004) may give smaller mean flows, but the resulting turbulence
levels are often smaller as well. For the ensuing Lagrangian analysis, this large-scale
motion is immaterial, but may imply a bias on the Eulerian results. The mean flow
values should be compared to noticeably larger fluctuating velocities, see table 1.

2.1. Spatial distributions of test particles

The average distance between particles is much larger than their diameter, and
particle interactions can be ignored. We estimate a Stokes number (Babiano et al.
2000) as St ≡ (2/9)(a/LE)2Re with Re being the Reynolds number based on

√
〈u2〉

and LE . For typical values (Ott & Mann 2000) of LE = 25 mm and Re ≈ 500 we find
St ≈ 0.05 � 1. To the given accuracy, we are therefore tempted to assume that the
particles follow the flow as passive tracers (Maxey & Riley 1983). However, numerical
results (Babiano et al. 2000) indicate that even for neutrally buoyant particles with
small Stokes numbers, we can find non-trivial deviations between the local flow
velocity and the particle velocity. This deviation seems to be manifested as an
accumulation of particles in high-vorticity regions of the flow, i.e. an initially uniform
spatial particle distribution becomes non-uniform with time. In the experiment, a fluid
element spends a finite time between two consecutive encounters with the energizing
grids, where the process, including the local re-distribution of particles, starts again.
It is not a priori obvious whether this time is short enough to prevent significant
particle accumulations.

In order to investigate the spatial distribution of particles, we make the hypothesis
that for uniform particle distributions, the probability for finding a particle in a given
volume element, dV , is independent of the positions of all other particles, with the
probability given by P = α dV , with α being a constant. It is well known that this
assumption implies that the particles are distributed in space according to a Poisson
distribution, which has the property that the standard deviation of the number N

particles in a given volume V is 〈N 2〉 − 〈N〉2 = 〈N〉. This is an easy relation to test
experimentally. We show in figure 4 the distribution of the number of particles in a
sphere with a given radius, and compare the result with the expected values for a
Poisson distribution. In figure 5 we show the ratio (〈N 2〉 − 〈N〉2)/〈N〉, and find that
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Figure 4. Statistical distribution of the number of particles in small spheres with radius
R = 20 mm. The symbol � gives the results obtained by assuming a Poisson distribution.
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Figure 5. Test of the hypothesis (〈N2〉 − 〈N〉2)/〈N〉 = 1 for a spatial Poisson distribution
of particles, for various radii in spherical volume elements.

it is close to unity, as expected for a Poisson distribution. The relation is independent
of the size and shape of the reference volume.

In the following we can therefore safely assume the particle density to be uniform,
when interpreting fluxes to an absorbing surface. If we consider the spatial distribution
of particle trajectories exceeding a prescribed length, the situation can, however, be
different. If we consider the distribution of relatively short time traces (shorter than
1–1.5 s), we can also assume them to be uniformly distributed, with the exception
of a small region at the boundaries of the measuring volume, see figure 1. If we,
on the other hand, want to consider particle traces covering longer time intervals,
we will find these to be non-uniformly distributed, with the largest concentration in
the central region. The reason is simple: assume that a particle located close to the
boundary marks the beginning of a sequence. If this particle moves inwards, it has
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Figure 6. Time variation of the estimate for the averaged particle flux for unit density
〈J (t)〉/n0, to stationary (dashed lines) and moving spheres (solid lines), with radii, R = 10, 20
and 30 mm.

the possibility if being part of a long time sequence. If, on the other hand, it moves in
the direction out of the measuring volume, the particle is likely to leave this volume
and be lost, in the sense that it will no longer be detected. Consequently, the observed
trace will be short in this latter case. A similar particle located close to the centre
of the measuring volume will, on the other hand, have the possibility of marking the
beginning of a long trace, irrespective of its direction of motion.

3. Particle flux into a stationary sphere
In this analysis, we select a reference sphere of interception with given radius,

located at a fixed spatial position. At each time step, we remove all particles entering
this fixed sphere in that time interval, and thus obtain an estimate for the particle
flux. Evidently, there need not be any particle at the centre of the sphere for this
Eulerian analysis. In figure 6 we show (with dashed lines) the averaged turbulent
flux into stationary spheres, considering spheres with three different radii, where two
are smaller than or comparable with the Eulerian length scale, while the third radius
(R = 30 mm) is larger. The absorption is, of course, virtual: the particles are physically
still present, but for the subsequent analysis they are removed from the database
after they have passed through the specified interception surface. When the analysis is
repeated for a new position of the reference sphere, in order to improve the signal-to-
noise ratio, or for a new choice of radius of the sphere, all particles are reintroduced
in the database. This procedure is similar for the ensuing Lagrangian analysis, shown
with a solid line in figure 6, to be discussed in detail in § 4.

3.1. Dimensional arguments

For the Eulerian case considered here, we argue that the only characteristic velocity
relevant for the problem is the root-mean-square velocity for the turbulent fluctuations,
σ . As long as we consider only stationary reference spheres with radius R smaller
than the characteristic length LE , we have a characteristic time R/σ . Consequently,
we expect that the normalized turbulent flux into the sphere can be written in the
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Figure 7. The normalized particle flux, 〈J 〉/n0, to a fixed stationary sphere of interception is

shown with open circles for different radii, as measured at 1/2 eddy turnover time, t = 1
2
τF .

The dashed line gives the R2-variation as a reference. Parameters are σ = 19 mm s−1, τF =1.6 s,
and ε = 225mm2 s−3. The fluxes are normalized to unit density.

form

〈J 〉/n0 = σR2g(tσ/R), (3.1)

since 〈J 〉 has the dimension time−1. We introduced the reference density of particles
at r → ∞ as n0. As far as the dimensional analysis is concerned, g is an unknown
dimensionless function, which, however, can be determined experimentally as in
figure 6. For a simple diffusion equation in three dimensions, we find that the particle
flux to an absorbing surface reaches a stationary level at large times, see for instance
Appendix A. The observations summarized in figure 6 indicate that this is also the
case for the present turbulent diffusion. In this stationary limit of g, the sole remaining
parameter variation is that given by the coefficient σR2 in (3.1).

In figure 7 we show the normalized particle flux to a stationary sphere of reference
as obtained for different radii R of the spheres, all at a late time, here taken to be 1

2
τF ,

defining τF ≡ LE/σ to be of the order of magnitude of an eddy turnover time. As
a reference we inserted the simple R2-variation obtained by dimensional arguments,
giving the coefficient of g in (3.1). A numerical coefficient is not accounted for.

The time-scaling postulated by (3.1) is also readily tested experimentally, with
results shown in figures 8 and 9. In figure 9, for instance, we show the normalized
flux into a stationary sphere, 〈J 〉/(n0σR2), as a function of the normalized temporal
variable, tσ/R. The figure contains results from eight experimental conditions with
different ε and σ , with parameters given in table 1. Each of these conditions was
analysed for radii R = 5, 6, 7, 8, 9, 10, 12.5, 15, 17.5, and 20 mm. Two different
experimental conditions happened to give σ = 12 mm s−1 and σ = 16 mm s−1, and
similarly two realizations were found for ε = 160 mm2 s−3. Only radii in the universal
subrange are considered in figures 8 and 9, i.e. R � 20 mm. The plotted curves have
the same duration when measured in seconds, but due to the normalization, some
will terminate at different normalized times. Figure 9 has a ‘banded’ structure, owing
to two of the datasets (those with the two largest values of ε, see table 1) being
somewhat different from the others. The simplest explanation for this observation
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Figure 8. Normalized flux to a stationary spherical surface, 〈J 〉/(n0σR2), as a function of
the normalized temporal variable, tσ/R, for a case where σ = 19 mm s−1, τF = 1.6 s, and
ε = 225 mm2 s−3. The duration of the tracks measured in seconds is the same: in normalized
time units, increasing R corresponds to successively shorter tracks.
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Figure 9. Normalized flux to a stationary spherical surface, 〈J 〉/(n0σR2), as a function of
the normalized temporal variable, tσ/R. The figure contains results from eight experimental
conditions.

might be that the experimental determinations of ε and σ are somewhat uncertain,
and that this uncertainty affects the normalizations of the data in figure 9. For the
present Eulerian analysis of the data, the small mean flow, mentioned before, can also
have an effect.

For small radii, R � LE , we find the scaling in (3.1) to be satisfied well. For
increasing R, the flux curves are consistently becoming lower. It can be concluded
that the dimensional reasoning gives only fair agreement with observations. For fixed
turbulence parameters, the scaling with R shown in figure 7 seems, however, to hold
some promise.
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Figure 10. Time evolution of the normalized particle density around an absorbing stationary
spherical surface, for R = 15mm. Parameters are as in figure 7.

As particles are absorbed by the surface, with particle flux densitites shown in
figures 8 and 9, the particle density will be depleted in the flow surrounding the fixed
reference spherical surface. We can analyse the average particle density for r > R, as
a function of time, with results shown in figure 10. The first curve shown is obtained
at the first sample time, i.e. t = 1/25 s. Variations with distance are obtained in ‘bins’
of 1 mm, and the second bin from the surface at r = R is the first one shown. To
reduce the noise level and to remove a density trend, we normalized the curves with
the radial density variation found at t = 0.

It is evident that with a finite number of particles in the experiment, all or most
of them will eventually be absorbed (in the sense discussed before): the system can
obviously not be considered truly infinite. In all cases analysed, the time sequences
are taken to be so short that at most 10 % of the particles are absorbed by the end
of the corresponding analysis. This will be true also for the analysis of particle fluxes
to a moving sphere.

4. Particle flux into a moving sphere
The foregoing Eulerian analysis can be repeated for the Lagrangian counterpart of

the problem. With the records for simultaneous particle trajectories available, we can
select one of them to represent the ‘predator’ and label all the others as ‘prey’. We
then select a predetermined radius R in the sphere of interception, and then remove
all the particles which happen to be inside this sphere at the initial time. During the
subsequent Lagrangian motion of the reference ‘predator’, we count the number of
prey entering its co-moving sphere of interception between successive time steps. Each
time a particle enters, it is ‘eaten’ in the sense that it is removed from the database. Of
course, if the data analysis is carried out for very long times, all particles representing
prey will eventually be removed. Here we are only interested in the time evolution of
the prey flux for times up to an eddy turnover time. As long as R is much smaller
than the size of the measuring volume, we can with negligible error assume the prey
concentration to be constant at large distances, corresponding to an ideally infinite
system. By choosing a large number of realizations, we can give an estimate for the
ensemble-averaged Lagrangian prey flux as a function of time after release.

In figure 6 we show, with solid lines, examples of the time-varying particle flux
to a moving sphere of interception with a given radius, R. This flux is the result
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of a competition between, on one hand, the depletion of the density of polystyrene
particles in the near vicinity of the reference sphere as they are ‘absorbed’, and, on
the other hand, inward flux of such particles, due to the turbulent motions in the
flow. In each realization, we divide the flux by the particle density for that particular
realization. The result thus represents the particle flux for unit particle density, i.e.
1 particle permm3. For small radii, R < LE , we find that the flux level is almost
constant in time. A decreasing trend becomes more conspicuous as the radius is
increased, and for R > LE we find a significant flux reduction for times approaching
the eddy turnover time, here estimated by τF ≡ LE/σ . The flux is largest initially,
when the concentration of ‘prey’ in the surroundings is largest. At later times there
will be a possibility of encountering fluid elements which have already been emptied,
and the prey flux becomes smaller. The flux depletion due to this effect evidently
increases for increasing radii in the reference sphere.

To test the accuracy of the analysis, we have tried to omit the initially closest particle
outside the sphere from the data analysis. The particle was omitted irrespective of its
velocity. In particular for the smallest sphere radii, we found a clear decrease in the
initial flux, as expected. For large radii, one missing particle did not make a significant
difference.

5. Analytical results
The problem of turbulent particle flux to a perfect absorber moving with the

flow can be studied analytically by making some simplifying assumptions. Here, an
absorbing spherical surface is assumed to have its centre defined by a particle, which
is moving with the flow.

5.1. Dimensional arguments

The present problem is characterized by a few dimensional quantities. With the
viscosity, ν, being immaterial for the flow dynamics for scale lengths larger than
the Kolmogorov length scale η ≡ (ν3/ε)1/4, we only have one quantity characterizing
the flow, namely ε with dimension length2/time3, and the length scale R < Lint

characteristic for the particular problem, here a moving sphere of interception. Out
of all these quantities the only combination giving a quantity with dimension time is
R2/3/ε1/3, while ε1/3R7/3 gives length3/time. The physical dimension of the averaged
normalized particle flux 〈J 〉/n0 is length3/time.

Quite generally it can then be argued, by purely dimensional reasoning, that the
turbulent flux for given reference density n0 must have the form

〈J 〉
n0

= ε1/3R7/3f
(
tε1/3/R2/3

)
, (5.1)

with f being a dimensionless function of a dimensionless variable. The actual form
of f can only be determined by a more detailed model analysis. We can argue that
in figure 6, we have determined f experimentally, without reference to any explicit
model equations. The arguments do not depend on any specific shape of the reference
volume, and assume only that it scales self-similarly with one length scale, R. The
functional dependence f in (5.1) will, of course, be different for different shapes of
the volume. Note that for t > R2/3/ε1/3, see figure 6, the variation of f (τ ) is rather
slow for parameters relevant here. The observations summarized in figure 6 seem to
indicate that f approaches a constant value for large times. The constant is assumed
to be universal, and we find it here to be in the range 5–10, as discussed in more
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detail later. The observation is not as trivial as it might seem, see e.g. Appendix A
and a discussion by Mann et al. (2003).

5.2. A model diffusion equation

The particle flux to a perfectly absorbing sphere which is moving with the flow
has been modelled by, for instance, a simple diffusion equation with a properly
chosen diffusion coefficient which depends on the simultaneous mean-square velocity
differences obtained at given spatial separations, but independent of time (Osborn
1996). Essentially, the argument is based on the second-order structure function

Ψ2(r) ≡ 〈(ur (0, t) − ur (r, t))
2〉 ≈ CK (εr)2/3, (5.2)

with the approximation being valid for separations r smaller than the length scale of
the turbulence, see figure 3. A diffusion coefficient is constructed from a characteristic
velocity and a characteristic length. The velocity is taken to be

√
Ψ2(r). For the

limiting form expressed in (5.2), the only length characterizing the two particles is
their separation r . The resulting diffusion coefficient is consequently K(r) ∼ r4/3ε1/3.
The proposed diffusion equation for the density n is identical to the one suggested by
Richardson in his study of distance-neighbour functions (Richardson 1926)

∂

∂t
n(r, t) = C

ε1/3

r2

∂

∂r
r10/3 ∂

∂r
n(r, t). (5.3)

The result is written for spherically symmetric geometry, with r being the radial
coordinate, measured from the position of the centre of the reference sphere, and
C is a numerical constant, assumed to be universal. While (5.3) was here obtained
by dimensional reasoning, it also has an analytical derivation (Roberts 1961). As a
consequence of (5.3) we have the well-known result for the mean-square separation of
two initially close particles 〈r2〉 = CRεt3, with the Richardson constant being CR ≈ 0.5
(Ott & Mann 2000). We have the relation C = (3/2)(3CR/143)1/3, giving C ≈ 0.33.
See Appendix B. In the present model, the time-varying diffusion flux of particles
to a perfectly absorbing sphere is given by 4πCε1/3R10/3dn(r, t)/dr |r = R, with n(r, t)
obtained from (5.3).

The derivation of (5.3) assumes that ε is a deterministic constant, and thereby
ignores intermittency corrections (Boffetta et al. 1999). Although relation (5.3) had
some experimental support from the time when it was first proposed (Richardson
1926), and was also supported more recently (Ott & Mann 2000), its general validity
has been criticized (Batchelor 1952; Roberts 1961), see also the summary by Ott &
Mann (2000). The range of validity of (5.3) is not fully explored. For large separations,
a simple diffusion equation, with constant diffusion coefficient, is expected to apply,
as indicated for instance by experimental results (Virant & Dracos 1997), for initial
conditions having scales larger than the integral length scale. These cases (Ott &
Mann 2000; Virant & Dracos 1997) referred to particle releases considered as initial
value problems. It seems that a diffusion equation as (5.3) can indeed be applied for
analysing relative two-particle diffusion in certain ranges of variables (Ott & Mann
2000). On the other hand, one cannot expect a diffusion coefficient depending solely
on relative times or spatial separations to be universally applicable for this problem
(Roberts 1961). In general, a Fokker–Planck equation, with (5.3) being one special
example, describes a Markov process, where the probabilities of future states depend
solely on the present, and not past ones. Modelling of turbulent displacements as a
simple Markov process is known to be rather inaccurate, and a study of the limits of
applicability of models like (5.3) is therefore worthwhile.



Turbulent particle flux to a perfectly absorbing surface 13

25

20

15

10

5

0 0.2 0.4 0.6 0.8 1.0 1.2

N
or

m
al

iz
ed

 f
lu

x

tε1/3/�2/3

Figure 11. Time variation of the normalized flux, ε1/3R7/3f (τ = tε1/3/R2/3), obtained by
numerical solutions of (5.3), for two initial conditions.

From (5.3) is easy to derive (Osborn 1996) a stead-state flux to a sphere with radius
R as

J0

n0

=
28π

3
Cε1/3R7/3, (5.4)

where n0 is the constant particle density at r → ∞, see also Appendix A. In figure 11
we show with solid line a numerical solution for the time-varying flux, using the
normalized version of equation (5.3), where distance is normalized by R and time
by R2/3/ε1/3. The flux to a sphere with unit radius in the normalized units is then
calculated. The particle flux follows the normalizations obtained by the dimensional
arguments in § 5.1. The (unphysical) singularity at t = 0 for the solid line solution is
due to the assumed infinite initial gradient at r = R.

The experimental uncertainty on particle positions (Mann et al. 1999) is app-
roximately 0.02 mm. The idealized step function in particle density, assumed as an
initial condition when obtaining the solid line solution in figure 11, is therefore not
necessarily a correct representation for our experimental conditions. To illustrate the
dependence on this initial variation of the density, we also show in figure 11 by a
dashed line the flux for a case where the initial density condition is 1 − exp(−(r −
R)2/	2) for r > R, and vanishing otherwise. This model is feasible for representing
a ‘smearing out’ of the initial density gradient due to the uncertainty in particle
positions. We used a relatively large value 	= 0.25R as an illustration. In this case,
the singularity of the initial condition has been removed, but a peak in the calculated
flux is still clearly noticeable. We find that the uncertainty associated with the particle
positions will have little relevance for our data analysis, as far as the model equation
(5.3) is concerned.

5.3. Comparison between analytical and experimental results

In order to compare our observations with analytical results, we show by open circles
in figure 12 the flux value at a time t = 1

2
τF , with τF being the eddy turnover time. This

time is sufficiently short to give a large number of particle traces for the averaging,
and on the other hand, sufficiently long to give an estimate close to the asymptotic
flux value of the particle flux. Vertical lines give the uncertainties on the experimental
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Figure 12. The particle flux, 〈J 〉/n0, to a moving sphere of interception is shown with open
circles for different radii, as is measured at 1/2 eddy turnover time, t = 1

2
τF . The solid

line gives the time-asymptotic result (5.4). Parameters are σ = 19 mm s−1, τF = 1.6 s, and
ε = 225mm2 s−3. The fluxes are normalized to unit density.

estimates. For small radii R, this uncertainty is large because we seldom find close
particles. For R > 5 mm, on the other hand, this uncertainty is smaller than the size
of the circles in figure 12. The analytical curve, given by a solid line, is the asymptotic
limit from (5.3), where we used ε = 225 mm2 s−3. Taking into account that we have
not introduced any free or adjustable parameters, we find the agreement between the
analytical and experimental results to be satisfactory, although we note a slight, but
systematic, reduction of the measured flux compared with the analytical asymptotic
result. The experimental results for the smallest radii give an underestimate, since in
this limit a non-trivial fraction of the particles are ‘glancing’, i.e. they pass through
the reference sphere within one sampling time, and are therefore not counted.

The model equations become inadequate for spatial separations larger than the
largest eddies in the turbulence, r � LE , although we find that the R7/3-scaling seems
to have a wider range of validity, in particular at early times, t < 1

2
τF . The analysis

summarized here refers explicitly to spherical volumes. Qualitatively, the arguments
will apply to different shapes as well, as long as they scale self-similarly with one
characteristic length, R.

We also present results for the flux variation for a fixed value of the radius of the
moving sphere of interception, R = 20 mm, and varying ε, see figure 13. In order to
sample each dataset at a consistent time, we present results for a selected time 1

2
τF

used also in figure 12, with the appropriate value of σ . In this limit, we can in all
cases assume that the particle flux is close to its asymptotic, or saturated, level. The
circles show the result for ε obtained by fitting the second-order structure function.
Other methods for determining ε can be found, however (Mann et al. 1999), and these
results are used to give the horizontal uncertainty bars. The theoretical solid line is
also in this case obtained as the asymptotic limit of the solution of Richardson’s
diffusion equation, using the most recent experimental value (Ott & Mann 2000) of
Richardson’s constant. Within the range of variability, we find the scaling with ε

to agree reasonably well with theoretical predictions based on (5.3). The numerical
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Figure 13. Variation of the normalized flux, 〈J 〉/n0, with varying ε for a fixed value of R =
20mm. The solid line gives the time-asymptotic result obtained from (5.3). See also figure 12.
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Figure 14. Normalized flux, 〈J 〉/(n0ε
1/3R7/3), as a function of the normalized temporal

variable, tε1/3/R2/3, for various radii and ε = 225 mm2 s−3. The dashed line gives a theoretical
result, obtained from (5.3), see also figure 11.

agreement between the measurements and analytical results is within a factor of 2, the
analysis predicting a slightly larger flux than the observed value, also in agreement
with the results shown in figure 12. The selected value R = 20 mm can be taken as
representative of the length scales smaller than or equal to LE in the experiments.

The results summarized in figures 12 and 13 refer to fluxes obtained at fixed
normalized times. We can also demonstrate a scaling law for the time variations of
these fluxes, and compare the results to the results from the model as illustrated in
figure 11. In figure 14 we show the normalized flux variation as function of normalized
time, for one set of experimental conditions, ε = 225 mm2 s−3 and σ = 19 mm s−1, and
radii R = 5, 6, 7, 8, 9, 10, 12.5, 15, 17.5 and 20 mm. These values are chosen to be
small enough to be within the universal subrange, but sufficiently large to give modest
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Figure 15. Normalized flux, 〈J 〉/(n0ε
1/3R7/3), as a function of the normalized temporal

variable, tε1/3/R2/3. Curves are shown for eight realizations with different turbulence
conditions, as in figure 9, each with curves for different R. The dashed line gives a theoretical
result, obtained from (5.3), see also figure 11.

statistical uncertainty in the estimate. In figure 15 we show the normalized fluxes for
eight different experimental conditions, see table 1, using the same radii, R, as in
figure 14. The figure demonstrates an experimental scatter, which is consistent with
the uncertainties in the estimates for ε. Also here we note a ‘banded’ structure in the
figure, although not as pronounced as in figure 9. We find that the uppermost group
of curves originates from the two datasets with the largest ε-values, see for instance
also figure 13, where these two datasets also seem to be slightly distinct from the
others. Ideally, we expect that the curves should all collapse into one, and found no
systematic variation with parameters, apart from the the two values of ε, as already
mentioned.

Again, we note that the results have a wider range of applicability, and need not
refer explicitly to spherical forms. A change in the shape of the reference volume,
will only imply a change in the numerical constant. Thus, the scaling law implied
in figure 13 will apply, for instance, to the prey flux for any predator, independent
of the shape of the interception volume, when it is exposed to different turbulence
intensities.

Given the experimental uncertainties, the scaling relations obtained by dimensional
reasoning are found to be satisfied well when analysing the data from our experiment.
The more specific diffusion equation model (5.3) only gives qualitative agreement for
the measured Lagrangian fluxes at early times. It seems, however, that the asymptotic
limit is accounted for well by the model, in particular also the numerical coefficient
obtained by use of the most recent value of the Richardson constant (Ott & Mann
2000).

As particles are absorbed by the surface, with fluxes shown in figures 14 and 15, the
particle density will be depleted in the flow surrounding the moving reference sphere.
We can also analyse here the average particle density for r > R, as a function of time,
with results shown in figure 16. The radius R is chosen to be in the universal subrange.
The first curve is shown at the first sampling time, i.e. t = 1/25 s. Variations with
distance are obtained in ‘bins’ of 1 mm, and the second bin from the surface at r = R is
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Figure 16. Time evolution of the normalized density around an absorbing spherical surface
moving with the flow, for R = 15mm. Parameters are as in figure 7.

the first one shown. To reduce the noise level, we also normalized here the curves with
the radial density variation found at t = 0. The present results can be compared
with the corresponding figure for the stationary surface, see figure 10. Unfortunately,
with the present noise level, it is difficult to demonstrate a significant quantitative
difference between the Eulerian and Lagrangian density variations, although the
physical conditions are very different in the two cases. If we choose a smaller value for
R, the noise level increases, while larger R will fall outside the universal subrange. For
these large radii, the differences between the particle densities surrounding stationary
and the moving absorbing spheres become conspicuous, in particular for large t and
r . By closer inspection, we find that the gradient in the average density, as measured
just outside the absorbing sphere, is steepest for the Eulerian case.

6. Conclusions
In this paper we investigate the turbulent flux to a perfectly absorbing surface, with

particular attention paid to the problem of predator–prey encounters in turbulent
flows. We have summarized the basic elements of an experimental method for
investigating the prey flux to a moving predator. In the limit of small R, we found
evidence for an R7/3 flux scaling (see figure 12) in terms of the radius of the sphere of
interception. We also found indications of an ε1/3 scaling with the turbulent dissipation
rate (see figure 13), in agreement with the predictions of the model equation (5.3).
This model also agrees to some extent quantitatively with the observations. In the
asymptotic time limit, to the extent it can be reached in the present experiment, the
data give a flux approximated well by (5.4), provided R < LE . This will in general
be the limit relevant for marine environments (Hill, Nowell & Jumars 1992). We
assume that the observations justify extrapolation to radii, R, smaller than those
experimentally accessible. In a general sense, our results also provide experimental
evidence for the importance of turbulent motion for the feeding process in marine
environments. We expect that in order to obtain a general analytical model, which
can give results for extended time periods and all R, we will have to allow for a
diffusion coefficient which depends on time as well as spatial separations, in particular
also including memory effects (Roberts 1961; Borgas & Yeung 2004).

The turbulent flux to a moving sphere can be significantly smaller than the flux to
a stationary one. This can be argued simply by noting that the relative mean-square



18 J. Mann, S. Ott, H. L. Pécseli and J. Trulsen

10

1

100 101 102

G
ai

n 
fa

ct
or

� (mm)

Figure 17. Variation of the gain factor for a stationary sphere for various radii of the sphere
of interception, R. The figure refers to a time t = 1

2
τF .

velocity of a particle convected past a stationary sphere is 〈u2〉, while it is 〈(u(r, t) −
u(r + y, t))2〉, for a passively convected sphere–particle pair, with separation y. For
small separations, y � LE , we have (Chandrasekhar 1957; Osborn 1996) the result
(5.2), and the relative velocity is small, implying a small flux to the passively convected
sphere. For large separations, y � LE , on the other hand, u(r, t) and u(r + y, t) can
be supposed to be statistically independent. The mean-square relative velocity is then
2〈u2〉. The flux in this latter case is expected to be larger than that to the stationary

sphere with a factor
√

2, although such large separations cannot be achieved for the
present experimental conditions.

We can define a ‘gain factor’ as the ratio between the flux to a stationary sphere
and the flux to the passively convected sphere with the same radius, R. In figure 17
we show this gain factor for various radii, R. All points are obtained at the reference
time 1

2
τF used before. We find that the gain factor is considerable for small spheres of

interception, using the length scale LE as a measure. For R ≈ LE this gain factor is
close to 1, and the particle flux is the same for a stationary as for the moving sphere.
For larger values, R > LE , the flux to a moving sphere exceeds that to a stationary
one. The variation of the initial value of the fluxes seen, for instance, on figure 6
is consistent with these observations. Heuristically, we can argue for a parameter
variation of the gain factor as given by the ratio of the two scaling laws obtained by
dimensional arguments, which here gives σ/(εR)1/3. This ratio is shown by a dashed
line in figure 17, with a numerical constant not accounted for. We find, in this case,
that this scaling law does not follow the data points in any convincing way, although
the trend seems reasonable. After all, neither the Eulerian nor the Lagrangian data
followed the scaling perfectly, the Eulerian data best at small R, the Lagrangian data
best at somewhat intermediate values. To expect a perfect agreement for the ratio of
the two quantities may seem somewhat optimistic, in particular because the mean flow
in the system gives a bias for the Eulerian fluxes. The gain factor shown in figure 17
can, for instance, be interpreted as the gain in prey flux for an imagined predator with
possibilities for self-induced motion, which it uses to exactly compensate the motions
in the surrounding water.
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The problem discussed here is clearly of general interest. It has implications for
coagulation processes in turbulent colloids, for instance. A detailed investigation
of this latter problem cannot, however, be made by experiments like ours because
the volume of the particles change upon coagulation, with a consequent change in
their response to the turbulent flow motions. We cannot reproduce this effect, for
obvious reasons. In standard studies of this problem (Chandrasekhar 1954), restricted
to diffusion by Brownian motion, this effect is in part also ignored. With the same
assumption it is possible to perform the relevant studies in experiments like ours,
with results having implications for the formation rate of coagulants larger than the
Kolmogorov scale η in turbulent flows.
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Appendix A. Simple models for the saturated turbulent flux
Consider a diffusion equation of the form

∂

∂t
P (r, t) =

1

rd−1

∂

∂r
rd−1K(r)

∂

∂r
P (r, t) (A 1)

where P (r, t) is the ensemble-averaged particle density, being related to the distance-
neighbour function introduced by Richardson (1926). Here, d is the dimensionality
of the problem, while K(r) is a diffusion coefficient depending on r , but otherwise
unspecified for the moment. The expression (5.3) corresponds to d =3 and K(r) ∼ r4/3.

We solve (A 1) for the case where we have an absorbing boundary at r = R,
i.e. with P (R, t) = 0. To have a steady-state solution for (A 1), we obviously require
the left-hand side to vanish, implying that

rd−1K(r)
d

dr
P (r) = const.

The constant can be determined by P (r → ∞) = n0, which is assumed known. We
have

P (∞) − P (R) =

∫ ∞

R

d

dr
P (r) dr =

∫ ∞

R

const

rd−1K(r)
dr

or

const=
n0∫ ∞

R

dr

rd−1K(r)

.

The time-stationary diffusion flux of particles to a perfectly absorbing sphere is
given by J0 = π(2R)d−1K(r)dP (r)/dr |r = R, in the negative r-direction, towards the
spherical surface. We find

J0

n0

=
π2d−1∫ ∞

R

dr

rd−1K(r)

, (A 2)

where π is to be omitted in the one-dimensional case.
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Hitherto, we have not specified the diffusion coefficient K(r). The Richardson model
(Richardson 1926) has K = Cε1/3r4/3, including a universal constant, C. Using this
model for a three-dimensional case, we find

J0

n0

= C
4πε1/3∫ ∞

R

dr

r10/3

=
28π

3
Cε1/3R7/3.

In two spatial dimensions we find J0/n0 = (8π/3)Cε1/3R4/3. We note that for a
diffusion equation with constant diffusion coefficient, K(r) = D, the two-dimensional
case is singular, by giving a logarithmically diverging integral in (A 2). Consequently,
non-trivial stationary flux limits do not exist for this case (Mann et al. 2003). A
simple diffusion equation for three spatial dimensions has a saturated normalized flux
J0/n0 = 4πDR, as readily obtained from (A 2).

Appendix B. Methods for determining the Richardson constant
When discussing methods for determining the Richardson constant, Boffetta

et al. (1999) and Boffetta & Sokolov (2002) noted a problem associated with the
straightforward idea of following a large number of initially close particle pairs, and
subsequently determining their mean-square average separation as function of time.
If an experimental study of relative diffusion is attempted for realistic experimental
or numerical conditions, a problem arises because of the finite size of the inertial, or
universal, subrange. To obtain the numerical constant, CR , appearing in Richardson’s
law for relative mean-square particle separations, experimentally (Mann et al. 1999;
Ott & Mann 2000) or numerically (Boffetta et al. 1999; Boffetta & Sokolov 2002), a
large number of realizations is needed in order to estimate the average value 〈r2(t)〉.
Even for short times, a significant number of particle pairs entering this average
will, however, have a separation which is large and outside the universal subrange.
This ‘cross-over’ effect can be avoided by considering a fixed spatial scale within the
universal subrange, and instead taking the average time 〈t〉 associated with this scale.
It is evident that the numerical constant obtained this way is specific for the fixed
scale problem. It was demonstrated (Boffetta et al. 1999; Boffetta & Sokolov 2002),
that this constant can be related to the fixed time problem by use of Richardson’s
diffusion equation (Richardson 1926). It was suggested that the average time for
particles initially located at a sphere with radius R1 to reach a shell with radius
R2 > R1 could be measured and used to express CR . The applicability of the scheme
was demonstrated numerically, and good agreement was found with experimental
values for CR . We have only been able to reproduce the numerical value for CR by
this method applied to our data, by careful choice of the ratio R1/R2. We should
like to point out that the saturated flux to an absorbing sphere considered here can
be used as well, and perhaps even more easily, for similar investigations. Also in
this case, the scale is uniquely given by the radius of the sphere and the particle
flux, where the density at infinity has to be given. This formulation of the problem
contains exactly the same information as the scale-method suggested by Boffetta
et al. (1999) and Boffetta & Sokolov (2002). There remains one basic distinction
between using 〈r2(t)〉 directly (as done by Ott & Mann 2000), as compared with
the scale methods, namely that the former case is model independent, while the
latter relies on an a priori given diffusion equation, with a questionable range of
validity.
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